Anomaly Detection in High-Dimensional Data
نویسندگان
چکیده
منابع مشابه
Anomaly Detection in Large Sets of High-Dimensional Symbol Sequences
This paper addresses the problem of detecting and describing anomalies in large sets of high-dimensional symbol sequences. 1 The approach taken uses unsupervised clustering of sequences using the normalized longest common subsequence (LCS) as a similarity measure, followed by detailed analysis of outliers to detect anomalies. As the LCS measure is expensive to compute, the first part of the pap...
متن کاملMethods for regression analysis in high-dimensional data
By evolving science, knowledge and technology, new and precise methods for measuring, collecting and recording information have been innovated, which have resulted in the appearance and development of high-dimensional data. The high-dimensional data set, i.e., a data set in which the number of explanatory variables is much larger than the number of observations, cannot be easily analyzed by ...
متن کاملA Hybrid Semi-Supervised Anomaly Detection Model for High-Dimensional Data
Anomaly detection, which aims to identify observations that deviate from a nominal sample, is a challenging task for high-dimensional data. Traditional distance-based anomaly detection methods compute the neighborhood distance between each observation and suffer from the curse of dimensionality in high-dimensional space; for example, the distances between any pair of samples are similar and eac...
متن کاملAnomaly Detection in Gps Data
Modern machine learning techniques provide robust approaches for datadriven modeling and critical information extraction, while human experts hold the advantage of possessing high-level intelligence and domain-specific expertise. We combine the power of the two for anomaly detection in GPS data by integrating them through a visualization and human-computer interaction interface. In this thesis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Graphical Statistics
سال: 2020
ISSN: 1061-8600,1537-2715
DOI: 10.1080/10618600.2020.1807997